
Heterogeneous Private Information Retrieval

Hamid Mozaffari
University of Massachusetts Amherst

hamid@cs.umass.edu

Amir Houmansadr
University of Massachusetts Amherst

amir@cs.umass.edu

Abstract—Private information retrieval (PIR) enables clients
to query and retrieve data from untrusted servers without the
untrusted servers learning which data was retrieved. In this
paper, we present a new class of multi-server PIR protocols,
which we call heterogeneous PIR (HPIR). In such multi-server
PIR protocols, the computation and communication overheads
imposed on the PIR servers are non-uniform, i.e., some servers
handle higher computation/communication burdens than the oth-
ers. This enables heterogeneous PIR protocols to be suitable for a
range of new PIR applications. What enables us to enforce such
heterogeneity is a unique PIR-tailored secret sharing algorithm
that we leverage in building our PIR protocol.

We have implemented our HPIR protocol and evaluated its
performance in comparison with regular (i.e., homogenous) PIR
protocols. Our evaluations demonstrate that a querying client
can trade off the computation and communication loads of the
(heterogeneous) PIR servers by adjusting some parameters. For
example in a two server scenario with a heterogeneity degree
of 4/1, to retrieve a 456KB file from a 0.2GB database, the
rich (i.e., resourceful) PIR server will do 1.1 seconds worth of
computation compared to 0.3 seconds by the poor (resource-
constrained) PIR server; this is while each of the servers would
do the same 1 seconds of computation in a homogeneous settings.
Also, for this given example, our HPIR protocol will impose a
912KB communication bandwidth on the rich server compared
to 228KB on the poor server (by contrast to 456KB overheads
on each of the servers for a traditional homogeneous design).

I. INTRODUCTION

Private information retrieval (PIR) is a technique to provide
query privacy to users when fetching sensitive records from
untrusted databases. That is, PIR enables users to query and
retrieve specific records from untrusted database(s) in a way
that the serving databases can not identify the records retrieved.
PIR algorithms have been suggested to be used in various
application scenarios involving untrusted database servers [23],
[39], [27], [31], [28], [14], [11], [44], [37], from retrieving
Tor relay information [39] to privacy-preserving querying of
location services [25] to registering Internet domains [23].

There are two major types of PIR protocols. The first type
is computational PIR (CPIR) [16], [36], [2], [1], [12], [13],
[22], [32], [38], [50], [4] in which the security of the protocol
relies on the computational difficulty of solving a mathematical
problem in polynomial time by the servers, e.g., factorization
of large numbers. Most of the CPIR protocols are designed to

be run by a single database server, and therefore to minimize
privacy leakage they perform their heavy computations on
the whole database (even if a single entry has been queried).
Consequently, existing CPIR protocols suffer from very high
computation overheads. The second major class of PIR is
information-theoretic PIR (ITPIR) [18], [30], [8], [17], [24],
[26], [7], [20]. ITPIR protocols provide information-theoretic
security, however, existing designs need to be run on more
than one database servers, and they need to assume that the
servers do not collude. Existing ITPIR protocols impose lower
computation overheads compared to CPIR algorithms, but at
the price of requiring the non-collusion assumption for the
servers. Therefore, (multi-server) ITPIR protocols are best fit
to scenarios involving multiple (potentially competing) data
owners who collaborate to run a service privately, therefore
colluding is not in their best interest, e.g., [37], [39], [11].
Our work focuses on this class of PIR, i.e., multi-server PIR
protocols.

Existing multi-server PIR protocols are homogeneous!
The existing body of work on multi-server PIR considers a
setting in which the non-colluding PIR servers have similar
computation and communication constraints. We call such
traditional multi-server PIR protocols homogeneous. Homo-
geneous PIR algorithms have been deployed in a wide range
of homogeneous applications; this includes registering Internet
domains [23], retrieving information of Tor relays [39], private
media delivery [27], privacy-preserving e-commerce applica-
tions [31], private query in open-access eprint repositories [28],
messaging applications [11], private online notification [44],
and private file-sharing applications [37]. For instance, in
PIR-Tor [39] the servers participating in the protocol are
Tor directory servers with similar resources, in DP5 [11] the
servers are messaging servers with similar network settings,
and in rPIR [37] the servers are p2p file-sharing seeds with
equal resources. In all of these applications, the proposed
multi-server PIR protocols impose symmetric computation and
communication loads on all of the servers involved in the
multi-server PIR protocol.

Introducing heterogeneous multi-server PIR. In this pa-
per, we introduce a new class of multi-server PIR, which
we call heterogeneous PIR (HPIR). An HPIR protocol is a
multi-server PIR protocol with asymmetric computation and
communication constraints on its servers, i.e., some of its
servers handle higher computation/communication overheads
than the others. We argue that HPIR algorithms enable new
applications for PIR, as well as improve the utility of some of
the known applications of PIR; this is because HPIR allows
the participation of low-resource entities in running private
services.

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24363
www.ndss-symposium.org

Example application scenario for HPIR: Here we present
an example application scenario for HPIR protocols: content
privacy in content delivery networks (CDNs). Consider a
content publisher, say, The New York Times (NYT): https:
//www.nytimes.com/, who uses a CDN provider (in this case,
Fastly Inc.) to host its web service. For the CDN provider
(Fastly) to be able to serve NYT’s content, NYT will need
to expose the activities of its viewers (e.g., what articles they
read) to Fastly, which is usually implemented by NYT sharing
its TLS private keys with Fastly. Obviously, this exposes the
—potentially privacy-sensitive—actions of NYT viewers to
Fastly (i.e., the third-party CDN provider).

As a solution to this problem, we suggest using a two-
server PIR protocol, in which one PIR server is a CDN
edge server (e.g., a Fastly server), and the other one is
NYT’s origin server. However, one of the main reasons that
content publishers (e.g., NYT) use CDNs is to offload their
computation and communication loads on CDNs. Therefore,
for the presented two-server PIR model to be practical, it
needs to impose much lower computation/communication costs
on NYT’s origin server compared to the costs imposed on
CDN (Fastly) edge servers. No existing PIR protocol provides
such heterogeneity, and therefore we argue for the design of
heterogenous PIR protocols. We further elaborate on potential
application scenarios of heterogeneous PIR in Section III.

Our technical approach. In this paper, we design the first
HPIR construction. Similar to state-of-the-art multi-server PIR
protocols [26], [30], [37], our protocol makes use of a secret
sharing algorithm to split queries into shares, where the shares
are sent to the multiple PIR servers. The PIR servers then
perform some computations on the database based on the query
shares they have received, and they send the results of the
computation to the querier. Finally, the querier combines the
responses from multiple PIR servers to retrieve the data record
she had asked for. The main difference between our HPIR
protocol and existing multi-server PIR protocols is that, in our
scheme, different numbers of query shares are sent to different
PIR servers. This results in different (i.e., heterogeneous)
computation and communication overheads on different PIR
servers.

Note that existing multi-server PIR protocols can not be
trivially extended to heterogeneous constructions. One can
modify a single-query PIR design like Goldberg’s PIR [26]
to a heterogeneous one by sending more than one query share
to some of the PIR servers; however, this will increase the
bandwidth/computation overhead on some of the servers (who
receive multiple shares) without reducing the overhead on
any of the PIR servers. The goal of HPIR is to reduce the
overhead on resource-constrained servers, through increasing
the overhead on resourceful servers. To be able to enforce
heterogeneity in our HPIR protocol, we design a specific multi-
secret sharing algorithm that enables us to split a query non-
uniformly between multiple PIR servers. We call our secret
sharing algorithm PIR-tailored, as it can only be used as part
of a PIR protocol, but has no use in standard applications of
secret sharing.

Note that we are not the first to use a multi-secret sharing
algorithm for PIR protocols. Henry et al. [30] and Li et al. [37]
have used multi-secret sharing algorithms for PIR protocols,

with the intent of being able to send multiple PIR queries at
each round of the protocol. Unfortunately, their multi-secret
sharing algorithms are ramp schemes, which are not practical
for typical applications of HPIR: a ramp secret sharing scheme
requires the number of servers to be proportional to the number
of shared secrets. However, most of the application scenarios
of HPIR (as introduced in Section III) need to be deployed
on two servers, as they comprise two non-colluding parties
(e.g., a content publisher and a CDN provider). We therefore
design a PIR-tailored multi-secret sharing algorithm that can
be deployed on as few as two PIR servers regardless of the
number of shares sent to each of the servers.

Therefore, the core of our HPIR algorithm, is our non-
ramp, PIR-tailored multi-secret sharing algorithm. In our PIR-
tailored secret sharing algorithm, any set of q secrets is shared
using a q-degree polynomial, therefore requiring at least q+1
shares for reconstruction. Therefore, in each round of our PIR
protocol, if the client intends to query for q records, she
will need to send q + 1 query shares to the multiple PIR
servers participating in the protocol. The client can do this in
a heterogeneous manner by sending different fractions of the
q + 1 shares to different servers, e.g., in a two-server setting,
she can send 1 share to the resourceless server (e.g., NYT’s
origin server) and the other q shares to the resourceful server
(e.g., Fastly’s edge server). Consequently, the computation
and communication overheads on different servers will be
heterogeneous as it is proportional to the number of shares
they receive and process.

Unlike previous secret-sharing based PIRs who use a single
prime number, our protocol makes use of multiple prime
numbers. This can increase the bandwidth of our protocol.
We therefore introduce several novel techniques to improve the
efficiency of our PIR protocol. In particular, unlike prior secret-
sharing based PIR schemes, we use random x-coordinates
in deriving the generated secret sharing polynomials. This
reduces the upload and download bandwidth overhead of our
protocol by reducing the element sizes of our PIR communica-
tions. Also, we reduce the upload bandwidth of the clients by
using a pseudo random number generator (PRNG) in sending
the client’s queries to the PIR servers.

Similar to existing multi-server PIR protocols, our HPIR
protocol provides information-theoretic security assuming that
at least one server does not collude. However, if a PRNG
is used for overhead reduction, our protocol’s security will
change to computational.

Implementation. We have implemented our HPIR algorithms
in C++, wrapped in Rust. We have implemented our code to
be compatible with the Percy++ PIR library [43]. We have
compared its performance with the most relevant state-of-the-
art PIR protocols and in different settings, e.g., for different
database sizes, for different numbers of queries, and for various
degrees of heterogeneity. We demonstrate that a querying client
can trade off the computation and communication loads of the
(heterogeneous) PIR servers by adjusting some parameters. For
example in a two server scenario with a heterogeneity degree
of 4/1, to retrieve a 1.4MB file from a 2GB database, the rich
(i.e., resourceful) PIR server will do 12.5 seconds worth of
computation compared to 4.09 seconds by the poor (resource-
constrained) PIR server; this is while each of the servers would

2

https://www.nytimes.com/
https://www.nytimes.com/

Table I: List of PIR notations

` Number of servers
t Privacy threshold (max number of colluding servers)
k Number of server’s responses
D Database matrix
r Number of rows in the database
s Number of elements in each record of the database
w Element size (bits)
N Total size of the database (bits)

do the same 12.04 seconds of computation in a homogeneous
settings. Also, for this given example, our HPIR protocol will
impose 2.8MB communication bandwidth on the rich server
compared to 724KB on the poor server (by contrast to 1.4MB
overheads on each of the servers for a traditional homogeneous
design).

Summary of contributions: In summary, we make the
following contributions:

• We introduce a new class of multi-server PIR, called
HPIR, which imposes non-uniform computation and com-
munication overheads on the PIR servers. We motivate the
importance of HPIR for various real-world applications.

• We design the first HPIR protocol which uses a PIR-
tailored multi-secret sharing scheme at the core of its
protocol.

• We have built a highly optimized implementation of our
HPIR protocol in C++ (compatible with the Percy++ PIR
library [43]) wrapped in Rust. We have evaluated the
performance of our HPIR implementation for different
database sizes, for different numbers of queries, and for
various degrees of heterogeneity. Our code is available at
https://github.com/SPIN-UMass/HPIR.

Organization: The paper is organized as follows. We start
by overviewing the preliminaries of PIR and secret sharing
algorithms in Section II. In Section III, we discuss potential
application scenarios for heterogenous PIR. In Section IV, we
present a PIR-tailored secret sharing algorithm, which is the
core of our HPIR constructions. We overview the high-level
ideas of our HPIR design in Section V, and we present the
basic version and the complete version of our HPIR algorithm
in Sections VI and VII, respectively. Finally, we present our
implementation and evaluation results in Section VIII. The
paper is concluded in Section IX.

II. PRELIMINARIES

In this section, we provide background information on
private information retrieval and secret sharing.

A. Preliminaries on PIR

In this section, we introduce the main concepts of PIR.
Table I shows the notations we use for PIR protocols.

Database as a Matrix: In a PIR protocol, one or multiple
servers, called PIR servers, host a database D, which can be
represented as an r-by-s matrix over a finite field F. The goal
of a client (querier) is to retrieve one row of D, called a data
record, through some interactions with the PIR servers in a

way that the PIR servers do not learn which record of D was
retrieved by the client.

D =


D1,1 D1,2 . . . D1,s

D2,1 D2,2 . . . D2,s

...
...

. . .
...

Dr,1 Dr,2 . . . Dr,s

 (1)

Non-private Information Retrieval: Suppose that the client
aims at retrieving the jth record of the database. She will create
a unit vector ~ej of size r where all the bits are set to zero except
the jth position being set to one:

~ej = [0 0 . . . 1 . . . 0 0] (2)

If the client did not care about privacy, she would send ~ej
to the server(s), and the server(s) could generate the client’s
response by multiplying the vector into the database matrix D:

~ej .D = [Dj,1 Dj,2 . . . Dj,s] (3)

Private Information Retrieval: A PIR technique allows
the client to obtain this response without revealing ~ej to the
server(s). Existing PIR techniques use two main approaches
to obfuscate ~ej : (a) Homomorphic encryption: In such pro-
tocols [50], [36], [2], [1], [4], the client encrypts ~ej element
by element before being sent to the servers. During the data
recovery phase, the client will extract her intended record by
decrypting the components of ~ej × D. (b) Secret Sharing: In
other PIR protocols [26], [30], [29], [20], [37], the client will
use secret sharing to generate different vector shares for ~ej , and
she will send the shares to the PIR servers. Most of the existing
single-server, CPIR protocols use homomorphic encryption,
and most of the existing multi-server, ITPIR protocols use
secret sharing.

Key PIR Designs: Here we overview the two key multi-
server PIR designs that are the most relevant to our work. We
present a more comprehensive overview of other PIR designs
in Appendix A.

Goldberg ITPIR using Shamir Secret Sharing. Goldberg’s
PIR [26] is an ITPIR scheme. The client uses Shamir’s secret
sharing [48] to split the unit vector ~ej into ` shares (each a
vector of size r), where the shares are sent to ` servers. Each
server will send back the multiplication of its received share
into the database matrix D. Finally, the client will interpolate
the query responses component-wise at x = 0 to extract her
interested row of the database.

Henry et al. ITPIR using Ramp Secret Sharing. Henry et
al. [30] modify Goldberg’s PIR [26] by replacing Shamir’s
(t + 1, `)-threshold secret sharing with a (t + 1, q, `)-ramp
secret sharing [10]. This enables a client to encode q secrets
in a (t + q − 1) degree polynomial, as opposed to only one
secret in a t degree polynomial in [26]; therefore, the protocol
is able to query multiple queries from the PIR servers at any
round of the PIR protocol. To query the q records, the client
will receive (t+ q) responses from the PIR servers.

3

https://github.com/SPIN-UMass/HPIR

Table II: List of notations used in secret sharing schemes

` Number of participants
t Privacy threshold
ρ Large prime number
q Number of secrets

S = {s1, s2, . . . , sq} Secrets

B. Preliminaries on Secret Sharing

The goal of secret sharing is to split a secret into multiple
shares (e.g., by a trusted dealer) such that the secret can be
reconstructed by combining a certain number of the shares.
The dealer distributes these shares among multiple sharehold-
ers who participate in the protocol. A (t+1, `) threshold secret
sharing scheme distributes a secret among ` shareholders in a
way that any coalition of up to t shareholders can not learn
anything about the secret, while a coalition of more than t
shareholders can fully reconstruct the secret. A scheme is
called multi-secret sharing [54], [15], [42] if it shares multiple
secrets in each round of the protocol.

Notations: Table II lists the notations we use for secret sharing
algorithms.

Key Secret Sharing Designs: We introduce two secret
sharing schemes that have been the basis of state-of-the-art
PIR protocols. Our secret sharing algorithm, introduced later,
is built upon these schemes.

Shamir Secret Sharing. Shamir’s scheme [48] is a (t+ 1, `)-
threshold scheme, in which the shares are the points of a
polynomial function. Specifically, a secret s is shared as
follows:

I The dealer chooses a random polynomial function
f(x) ∈r Fρ of degree t, where f(0) = s is the secret.

II The dealer chooses ` different non-zero x-coordinates
{x1, . . . , x`} uniformly at random, where xi ∈r Fρ for
1 ≤ i ≤ `.

III The dealer sends (xi, f(xi)) to the ith shareholder.

Any coalition of k > t shareholders can recover the secret s
from their shares by using Lagrange polynomial interpolation.
Therefore, given k > t shares (x1, y1), (x2, y2), . . . , (xk, yk)
the shared secret is reconstructed as

s =

k∑
m=1

ym(

k∏
n=1,n6=m

xn(xn − xm)−1) mod(ρ) (4)

On the other hand, for a coalition of k ≤ t shareholders,
any s ∈ Fρ has the same probability of being the secret.

Ramp Variant of Shamir Secret Sharing. While a Shamir (t+
1, `) threshold scheme shares only one secret using a t-degree
polynomial, a (t+1, q, `)-ramp secret sharing [10] uses a (t+
q − 1)-degree polynomial to share q secrets simultaneously
with the privacy level of t. That is, the dealer shares q secrets
{s1, . . . , sq} from Fρ among ` participants in a way that any
coalition of t+ q or more participants can retrieve all of the q
secrets, but any set of participants up to t cannot learn anything

about the secrets. However, for t < k < t+ q participants, the
joint distribution of the secrets is not uniform, therefore it leaks
information about the secrets. The dealer takes the following
steps to share q secrets {s1, . . . , sq}:

I Chooses {yq+1, . . . , yq+t} randomly from Fρ
II Finds a polynomial f(x) with degree of at most t+ q− 1

that contains the following points:

(1, s1), . . . , (q, sq), (q + 1, yq+1), . . . , (q + t, yq+t)

III Sends secret share (xi, f(xi)) to the ith shareholder for
1 ≤ i ≤ ` (xis are random, non-zero and different
numbers from Fρ).

To retrieve the secrets, any k ≥ t+q shares can give away the
secrets using Lagrange interpolation:

sj =

k∑
m=1

ym(

k∏
n=1,n6=m

(j − xn)(xm − xn)
−1) mod(ρ) 1 ≤ j ≤ q

(5)

III. INTRODUCING HETEROGENEOUS PIR

A PIR protocol is either single-server or multi-server.
The security of multi-server PIR relies on assuming that its
multiple PIR servers do not collude; this allows multi-server
protocols to impose lower computation overheads than single-
server protocols. Consequently, single-server and multi-server
protocols are suited to different application scenarios. Note that
this is a different classification than computational PIR (CPIR)
versus information-theoretic PIR (ITPIR), but all single-server
PIR protocols fall in the category of computational PIR
(CPIR) [16], [36], [2], [1], [12], [13], [22], [32], [38], [50],
[4], as proved by Chor et al. [17].

Existing multi-server PIR constructions [30], [8], [17],
[24], [26], [55], [7], [20], [18] impose uniform computation
and communication overheads on their (non-colluding) mul-
tiple PIR servers; therefore, we call them homogenous. In
this paper, we introduce heterogeneous PIR (HPIR),1 which
is a subclass of multi-server PIR protocols. An HPIR protocol
is a multi-server PIR protocol with asymmetric computation
and communication constraints on its servers. That is, some
of its servers (called rich servers) handle higher computa-
tion/communication overheads than the others (called poor
servers).

A. Potential Applications Scenarios

We believe that HPIR protocols will enable new application
scenarios for multi-server PIR, as well as improve the usability
of some of the known applications of PIR. To support this
claim, in this section we present several potential application
scenarios for heterogeneous PIR algorithms.

Note that for some of these applications, one could instead
use a single-server PIR, however, existing single-server PIRs
are too slow for most of the in-the-wild applications. Also,
note that we only present the intuitions on why HPIR will fit

1Note that some previous work [9] uses HPIR to refer to hybrid PIR, another
class of PIR.

4

these application scenarios; integrating HPIR in each of the
following scenarios will require additional engineering efforts
(e.g., to synchronize the PIR servers), which is out of our
scope.

Finally, note that in our HPIR applications, we assume the
HPIR servers to be non-trusted. In a given HPIR application,
the PIR database itself is not privacy-sensitive, but the users’
accesses to the records of the database is privacy-sensitive.
Therefore, the PIR database can be replicated on non-trusted
servers (like CDN servers). On the other hand, we assume the
PIR servers to not collude with each other. As discussed later,
this is a realistic assumption as, in our applications, the HPIR
servers have no motivation to collude.

1) Privacy-preserving Content Delivery: Content publish-
ers increasingly use Content Delivery Networks (CDNs) to
improve the security and performance of their services. How-
ever, to do so, they have no choice but to expose their clients’
activities to the third-party CDN operators they use (normally,
by sharing their TLS private keys with their CDN providers).
For instance, a CDN provider (say, Fastly) hosting the website
of an online newspaper (say, the New York Times) will be able
to see which articles are viewed by any particular visitor of
that online newspaper. Note that, in this scenario, the privacy-
sensitive information is not the hosted web content (e.g., all
of the NYT articles are public) but the metadata of accessing
such (public) content by the users. The problem is applicable
to similar CDN-hosted services, e.g., a patents database, a
certificate authority, a software updates service, etc.

We suggest to deploy PIR on CDN servers to enable
privacy-preserving content delivery. Existing single-server PIR
protocols are too slow to be used in this application (and most
other proposed applications of PIR); we therefore suggest a
heterogeneous 2-servers PIR protocol to be used for this appli-
cation. This is illustrated in Figure 1: the CDN edge servers act
as the “rich” servers and the content publisher’s origin servers
act as the “poor” servers. Our heterogenous setting is ideal
for this application: The CDN edge servers (e.g., Fastly edge
servers) are often much closer to the clients and are designed to
be capable of handling very large traffic volumes. By contrast,
content publisher servers (e.g., www.nytimes.com/’s origin
servers) aim to minimize their communication and computa-
tion costs (in fact, this is one of the key reasons for using
CDNs for content hosting). As mentioned before, all existing
multi-server PIR protocols are homogeneous. This scenario
demonstrates the need for heterogeneous PIR protocols that
impose non-uniform computation and communication loads on
the multiple PIR servers running the protocol.

Note that like standard multi-server PIR protocols, we
assume the HPIR servers to be non-colluding. This is a realistic
assumption, since in our mentioned applications of HPIR, the
servers have no motivation to collude! For instance, in the
CDN application of HPIR presented here, the origin servers
(owned by the New York Times) have no reason to collude with
the CDN HPIR servers, as this will compromise the privacy
of their users.

2) Private P2P File Sharing: Various popular services such
as Spotify, PPTV, and BitTorrent use their clients for content

CDN

Origin Server (https://www.nytimes.com)
Acting as poor PIR Server

Cache Server
Acting as Rich PIR Server

PI
R

Qu
er

y &
 R

es
po

ns
e

I

PIR Query &

Response II

PIR Client

Figure 1: Illustrating how a heterogeneous PIR scheme can
enable private content delivery by CDNs.

distribution. Recent work [37] has suggested to use PIR to
protect privacy in such services, particularly for BitTorrent
and Spotify. We argue that an HPIR protocol will significantly
improve the usability of PIR for such applications. This is
because in these systems, the peers are located in diverse
geographic locations, and have different computation and
communication resources. Therefore, when a heterogeneous
PIR is deployed in this setting, a client can obtain larger traffic
volumes from nearby seeding peers compared to distant peers
(while protecting privacy through PIR), therefore improving
the overall download experience.

3) Query Privacy in Cache Networks: A multitude of
next-generation network architectures cache content objects to
improve the overall utility of the network, e.g., Named Data
Networking (NDN) [56], Publish-Subscribe Internet Routing
Paradigm (PSIRP) [51], Data Oriented Network Architecture
(DONA) [34], Network of Information (NetInf) [3], and Mo-
bilityFirst [52]. A key privacy challenge to the design of cache
networks like NDN is the privacy of queries against cache
routers. That is, a cache router will learn the content names
requested by a client in order to be able to serve her. We
propose to use PIR as a mechanism to enforce cache privacy in
cache networks. Our proposal is to have the cache routers serve
as PIR servers, and store named objects into a PIR database.
A client interested in a particular named object will need to
query the cache routers through a PIR protocol in order to
preserve her query privacy. We therefore suggest multi-server
PIR protocols to be used for this application. However, existing
multi-server designs rely on the assumption that PIR servers
should not collude. Therefore, the two (or more) cache routers
queried by a client should be under different jurisdictions, i.e.,
run by competing Internet entities. For instance, in a 2-server
setting, the first PIR server queried by the client can be the
edge router of the client, and the second router can be a router
in a non-peer AS or the content publisher itself (therefore non-
colluding with the edge router).

As can be seen, in this setting, the edge router (e.g., the
client’s default gateway) can tolerate much higher bandwidth

5

www.nytimes.com/

and computation burden than the distant router/publisher—in
fact, the whole purpose of information centric networks is to
reduce transition loads by caching content on local routers.
Therefore, the deployed PIR protocol needs to be heteroge-
nous.

IV. OUR PIR-TAILORED SECRET SHARING ALGORITHM

In this section, we define and design a PIR-tailored secret
sharing scheme that we use in the design of our PIR protocol.

Why a new scheme? Similar to the state-of-the-art multi-
server PIR schemes [26], [30], [37], our proposed HPIR
scheme uses secret sharing to split the query vector between
PIR servers. To enable heterogeneity, an HPIR protocol needs
to use a multi-secret sharing algorithm, as introduced earlier.
This will allow an HPIR protocol to split PIR computations
and communications unevenly between PIR servers. Note that
some prior PIR protocols by Henry et al. [30] and Li et
al. [37] have used multi-secret sharing algorithms. However, a
ramp secret sharing algorithm is not suitable for heterogeneous
PIR: in a ramp secret sharing scheme, the number of required
servers increases with the number of shared secrets; therefore,
for an HPIR protocol based on a ramp secret sharing scheme,
the number of PIR servers increases with the degree of hetero-
geneity. However, most of the practical application scenarios
of HPIR (as introduced in Section III) need to be deployed
on two servers, as they comprise two non-colluding parties
(e.g., a content publisher and a CDN provider). Therefore, we
design a PIR-tailored multi-secret sharing algorithm in which
the number of shareholders does not increase with the number
of shared secrets. This allows our HPIR protocol that uses this
PIR-tailored secret sharing to be run by as few as only two
servers, regardless of the degree of heterogeneity.

A. Introducing PIR-tailored Secret Sharing

A PIR-tailored secret sharing algorithm is one that can be
used as part of a PIR protocol, but has no use in traditional
applications of secret sharing algorithms. In particular, unlike
standard secret sharing algorithms, in a PIR-tailored secret
sharing, the shareholders can not recover the secrets even if
they all collude; the shareholders can only use their shares to
perform some computation (i.e., on the PIR database) and send
the results to the dealer. Also, unlike standard secret sharing
algorithms, our PIR-tailored secret sharing only shares secrets
from {0, 1}; this is because in PIR applications, the client’s
(secret) query for each database record has one of the {0, 1}
values, where 1 implies interest in retrieving that database
record. Finally, in PIR-tailored secret sharing, only one of the
secrets in each PIR-tailored polynomial can be 1, and the rest
are 0s.

Before presenting our PIR-tailored secret sharing algo-
rithm, we summarize the main differences of our PIR-tailored
secret sharing algorithm from standard secret sharing algo-
rithms:

1) In standard secret sharing, a dealer shares value(s) from
Fρ where ρ is a prime number. However, in PIR-tailored
secret sharing, the dealer is sharing value(s) from {0, 1}.

2) In a standard multi-secret sharing algorithm, the dealer
has no constraint on choosing the values of the secrets.

However, in PIR-tailored secret sharing, only one of the
secrets can be 1, and the rest should be 0s.

3) In standard secret sharing, the x-coordinates of the points
used for constructing the secrets sharing polynomial is
known to the public as X = {1, 2, . . . }; however, in PIR-
tailored secret sharing these values are secret and only
known to the dealer.

4) In standard secret sharing, the x-coordinates used in gen-
erating the share for shareholder i is known to that specific
shareholder, i.e., the ith shareholder knows (x′i,f(x

′
i));

however, in PIR-tailored secret sharing these values (x′i)
are secret from all shareholders, and only known to the
dealer.

B. Algorithm Details

Parameters Suppose the dealer plans to share q secrets, S =
{s1, s2, . . . , sq}, among ` participants with a threshold t ≤ `.
All the secrets are from {0, 1}, and only one of the secrets
could be 1. At the first step, the dealer generates q prime
numbers P = {p1, p2, . . . , pq} at random. Then, the dealer
calculates n = p1 × p2 × · · · × pq . Note that our shares are
about q times of prior works since all the calculations are in
mod(n).

Initial phase: At the start of the protocol, the dealer creates
the P and n parameters and announces value of n publicly.

Sharing Secrets: In each round of the protocol, the dealer
shares q secrets with the shareholders by taking the following
steps (we first describe this for q ≤ t, and then will discuss
the modifications for q > t). Our scheme is based on the
ramp secret sharing introduced in Section II-B, so we discuss
the modifications with respect to that scheme. For simplicity,
we use X = {1, . . . , t + 1} as the x-coordinates of the root
points, but they can be chosen randomly from Z∗n = {x ∈
Zn | gcd(n, x) = 1}. Like other systems working based on
Lagrange interpolation, we have the constraint that gcd(xi −
xj , n) = 1 for xi, xj ∈ X and i 6= j.

I In contrast to the ramp scheme that uses points (i, si),
our scheme uses the points (i, ri × pi + si) to build our
secret sharing polynomial function. ri ∈ Z∗n are random
numbers that increase the degree of freedom of the
secrets. Therefore, the dealer uses Lagrange polynomial
interpolation to find a polynomial f(x) (with a degree of
at most t) that contains these t+ 1 points:

(1, (r1×p1)+s1 mod(n)), . . . , (q, (rq×pq)+sq mod(n)) . . .

(q + 1, rq+1 mod(n)), . . . , (t+ 1, rt+1 mod(n))

II The dealer will send the secret share (f(xi)) to the ith
shareholder for 1 ≤ i ≤ `. (xi ∈ X′s are random numbers
from Z∗n with Lagrange constraint gcd(x′i − x′j , n) = 1
for x′i, x

′
j ∈ X′ and i 6= j and a constraint that gcd(xi −

x′j , n) = 1 for xi ∈ X and x′j ∈ X′.) X′ is the set of
x-coordinates used to generate shares.

Secret reconstruction: To retrieve the secrets, any k ≥ t+1
shares can give away the secrets using Lagrange interpolation:

6

1) The combiner will construct the polynomial f(x) using
the k ≥ t + 1 points of (x′j , f(x

′
j)) for x′j ∈ X′ with

Lagrange polynomial interpolation.
2) The combiner uses f(x) to obtain the secrets. Suppose the

combiner wants to recover the ith secret, si. As (i, (ri ×
pi) + si mod(n)) is a point of the known f(x), she can
extract si using the pi:

si = f(i) mod(pi)

=

k∑
m=1

f(x′m)(

k∏
n=1,n6=m

(i− x′n)(x
′
m − x′n)

−1) mod(pi)
(6)

Extension to q > t: The protocol will operate with small
changes. f(x) will have a degree of at most q. Therefore, in the
first step of the sharing protocol, the dealer will use the points
(1, (r1×p1)+s1 mod(n)), . . . , (q, (rq×pq)+sq mod(n)), (q+
1, rq+1 mod(n)) to construct f(x). The dealer releases q − t
random points of f(x) publicly to make the scheme a (t+1,`)
threshold secret sharing algorithm. The rest of the protocol is
the same.

C. Security Analysis

Degree of freedom of secrets The degree of freedom
of shared secrets demonstrates how many independent vari-
ables are used in generating the secret sharing function. A
multi-secret sharing scheme is secure if the q shared secrets
{s1, . . . , sq} have a degree of freedom of q or higher when
up to t shares are available. Each secret share known to the
adversary reduces the degree of freedom by one, as it provides
the adversary with a new equation for the main polynomial.
Therefore, if there are d independent variables in f(x), the
degree of freedom given t secret shares will be d− t.

Increasing the degree of freedom by introducing new
random variables Our PIR-tailored secret sharing scheme
shares q secrets using a t degree polynomial. We add q
random variables, ris, to the polynomial points we share, i.e.,
(1, (r1 × p1) + s1 mod(n)), . . . , (q, (rq × pq) + sq mod(n)).
Therefore, the adversary’s degree of freedom to reconstruct
the secrets will be t + q + 1. Assuming that the adversary is
provided with t shares, the degree of freedom will reduce to
q + 1, which is still larger than the number of secrets, q.

The q > t state of the PIR-tailored secret sharing is used
as the core of our HPIR since we want to deploy our HPIR
with minimum number of PIR servers (e.g., two servers with
t = 1). Therefore, when q > t, we claim that any coalition
with up to q shares can not learn anything about the secrets.
Note that this is unlike the ramp secret sharing which leaks
some information if the number of shares is between t+1 and
t+ q − 1. The complete proof is provided in Appendix B.

V. SKETCH OF OUR HPIR PROTOCOL

In this section we present the core design of our HPIR
protocol. The core of our HPIR construction is the PIR-tailored
multi-secret sharing algorithm introduced in Section IV.

The high-level ideas of our HPIR protocol Our HPIR
protocol has the same high-level architecture as Henry et al.’s

multi-server PIR [30]. The querying client will act as the secret
sharing dealer, and the PIR servers act as the shareholders.
The client will use the PIR-tailored secret sharing algorithm
of Section IV to split queries into shares, which are then sent
to the servers. The servers will make some computation using
the query shares and will send the results back to the querying
client. Finally, the client recovers her requested records by
combing the responses from the PIR servers. Like previous
information-theoretic PIR systems, we assume that all the PIR
servers are not colluding, so they cannot reconstruct the secret
sharing polynomials to recover the secrets.

Our HPIR protocol is a multi-query protocol, i.e., the client
queries multiple (q) records in each round of the protocol. The
client will generate a polynomial fi(x) for each record of the
database. Each polynomial is used to share q secrets with the
possible values of 0 or 1. A value of 1 means that the client
is asking for the record corresponding to the index of that
polynomial. To query for q records in a given round of the
protocol, the client will send q + 1 vectors of size r elements
to the PIR servers to retrieve q records of the database.

Note that the key enabler of heterogeneity in our HPIR is
the PIR-tailored secret sharing scheme of Section IV. To en-
force heterogeneity, the client simply sends a different fraction
of query shares to different servers based on their bandwidth
and computational capabilities. For instance, consider a three-
server setting, where the three servers plan to handle 30%,
10%, and 60% of the overall communication/computation
overheads, respectively. Therefore, the normalized resources
of the three servers are 3, 1, 6, respectively (we normalize by
dividing by the smallest number). For this setting, the client
will choose q = (3 + 1 + 6)− 1 = 9. Then, to retrieve q = 9
records of the database, the client will send 3 (out of total
q + 1 = 10) of her query shares to the first server, 1 (out
of total q + 1 = 10) of the shares to the second server, and
the rest of them to the third server. The non-ramp property of
our PIR-tailored secret sharing scheme enables us to design
multi-query PIR algorithms that can operate using as few as
two PIR servers.

Two Versions To better present the technical details of our
HPIR protocol, we present a basic version and a complete
version for our HPIR protocol. In our basic HPIR (Section VI),
there are q prime numbers involved in generating the queries,
so the communication cost will increase with the number
of queries linearly; we address this in our complete version
(Section VII) by introducing additional parameters.

VI. OUR HPIR ALGORITHM (BASIC VERSION)

In the following, we present the steps of our HPIR protocol.
For clarity of presentation, we present our protocol for a 2-
server PIR setting (composed of a rich server and a poor
server). Please refer to Table I for the notations.

A. Client Generates r Polynomials

Suppose that the client wants to query q records of the
database with indices β = {β1, . . . , βq}; she takes the follow-
ing steps to generate r polynomials (one for each row of the
database):

7

1) The client will choose q > 2 different prime numbers
P = {p1, p2, . . . , pq} greater than 2w, where w is the
element size in the database. The client will calculate n =
p1×p2×· · ·×pq , and will send it to the PIR servers (note
that all the calculations in this protocol are in mod(n)).

2) The client will construct r polynomials of degree q
based on our PIR-tailored secret sharing algorithm (see
Section IV-B). In generating each of the polynomials,
the client will choose q + 1 points with random distinct
x-coordinates X = {x1, x2, . . . , xq+1} (used for all the
polynomials) and y-coordinates given by (for 1 ≤ i ≤ r):

yi,j = fi(xj) =

{
(ri,j × pj) + δi,j mod(n) for 1 ≤ j ≤ q

ri,j mod(n) for j = q + 1
(7)

where ri,js are random numbers from Z∗n = {x ∈
Zn | gcd(n, x) = 1}, and the secrets are:

δij =

{
1 i = βj
0 o.w.

(8)

where β = {β1, . . . , βq} are the indices of the data
records being queried by the client.

3) Finally, after choosing these points, the client uses La-
grange interpolation to find the r polynomials of degree
q that contain these points.

Constraints All the members of X are chosen from Z∗n
at random. Like other systems working based on Lagrange
interpolation, we have the constraint that gcd(xi − xj , n) = 1
for xi, xj ∈ X, i 6= j.

Example: Suppose we have five records in our database
(r = 5), and the client wants to retrieve records with indices
β = {1, 3, 4}. Each row of the following matrix shows the
y-coordinates of each of the r = 5 polynomials (ri,j ∈r Z∗n
for 1 ≤ i ≤ r, 1 ≤ j ≤ q + 1):

Y =


(p1 × r1,1) + 1 p2 × r1,2 p3 × r1,3 r1,4
p1 × r2,1 p2 × r2,2 p3 × r2,3 r2,4
p1 × r3,1 (p2 × r3,2) + 1 p3 × r3,3 r3,4
p1 × r4,1 p2 × r4,2 (p3 × r4,3) + 1 r4,4
p1 × r5,1 p2 × r5,2 p3 × r5,3 r5,4


(9)

B. Client Generates Queries

Using the r polynomials generated above, the client will
generate secret shares for her q queries. To do so, as described
in Section IV-B, the client will pick (q + 1) random x-
coordinates of X′ = {x′1, x′2, . . . , x′q+1} (different from X,
with the same constraint), which are kept secret from the
server, to generate the query matrices. Qc is the query matrix
for the rich (resourceful) server with q rows and r columns,
and Qr is the query matrix for the poor (low-resource) server
with one row and r columns:

Qc =


~F (x′1)
~F (x′2)

...
~F (x′q)

 =


f1(x

′
1) f2(x

′
1) . . . fr(x

′
1)

f1(x
′
2) f2(x

′
2) . . . fr(x

′
2)

...
...

. . .
...

f1(x
′
q) f2(x

′
q) . . . fr(x

′
q)

 (10)

Qr =
[
~F (x′q+1)

]
=
[
f1(x

′
q+1) f2(x

′
q+1) . . . fr(x

′
q+1)

]
(11)

where fi() is the polynomial function corresponding to the
record i. The client sends the query matrices Qr and Qc to
the servers.

C. The Servers Respond

After receiving the query matrices, each server will cal-
culate the multiplication of Rc/r = Qc/r × D mod(n), and it
will return the results to the client. Note that the servers do not
know the values of rij , X′, X, and the prime numbers (pjs).

D. Reconstructing the Records by the Client

Using the responses received from the servers, R = Rc||Rr,
the client will construct s polynomials φk(x). Each φk is a q-
degree polynomial that produces the kth elements of the q
queried records.

Each column k of R contains q+1 points for a polynomial
φk(x), i.e., the points (x′j ,Rj,k) for 1 ≤ j ≤ (q + 1). Each
Rj,k (for 1 ≤ j ≤ q + 1 and 1 ≤ k ≤ s) is given by:

Rj,k =

r∑
i=1

fi(x
′
j)×Di,k mod(n)

=

r∑
i=1

(Di,k ×
q+1∑
v=1

(ai,v × x′v−1
j)) mod(n)

=

q+1∑
v=1

(x′v−1
j ×

r∑
i=1

(ai,v ×Di,k)) mod(n)

= φk(x
′
j) mod(n)

(12)

where φk() is a polynomial of degree q, and ai,v is the vth
coefficient of the polynomial fi(x). φk has a degree of q, and
therefore the client can derive it using Lagrange interpolation
by using the q + 1 points (x′j ,Rj,k) for 1 ≤ j ≤ (q + 1).

Finally, the client retrieves the responses to her q queries
using the derived φ·(·) polynomials by feeding the x-
coordinates X = {x1, . . . , xq} into φk(xj). Specifically, the
client derives the kth element of the jth queried record, Dβj ,k,
as:

Dβj ,k = φk(xj) mod(pj) for 1 ≤ k ≤ s, 1 ≤ j ≤ q (13)

E. Communication Overhead

Since the client uses q prime numbers (one for each query),
the upload and download overheads are linear with the number
of queries. To retrieve q records, the client should send q2 ×
r × w bits to the rich server, and q × r × w bits to the poor
server. The rich server will send back q2× s×w bits, and the
poor server will send back q × s× w bits.

F. Security

This PIR protocol is built on our PIR-tailored secret sharing
scheme of Section IV, so its security is based on the underlying
PIR-tailored secret sharing scheme. Our HPIR protocol uses r
PIR-tailored secret sharing functions (one for each database
record), and retrieves q secrets at each round. To provide

8

information-theoretic security, the set of q secrets should have
a degree of freedom more than q× r. In a two-servers setting,
the rich server will know q × r points of these PIR-tailored
secret sharing schemes, so the number of independent variables
in the system should be more than 2× q× r. There would be
(2q + 1) × r + 2q + 2 random variables inside the system:
(q + 1)× r variables of rij , q × r secret values of δij , q + 1
random variables of X, and q+1 random variables of X′. If the
poor server does not collude with the rich server, the degree
of freedom of secrets will be more than the q × r threshold.
Therefore, our HPIR is information-theoretic secure if at least
one of the PIR servers does not collude with the others.

VII. OUR HPIR ALGORITHM (COMPLETE VERSION)

Why extending the design As mentioned above, the basic
version of our HPIR protocol has high communication costs
due to using q prime numbers (one for each query). Our
extended protocol uses only two prime numbers P = {p1, p2}
for query construction, therefore reduces communication costs
significantly. To preserve its information-theoretic security,
we add multiple parameters to its polynomials. To do so,
we make the x-coordinates of the PIR-tailored secret sharing
polynomials unique for each row of the database, and unknown
to the servers.

Improving efficiency by introducing unique x-coordinates
for each PIR-tailored secret sharing function Recall from
Section VI-D that the constructed PIR-tailored secret sharing
polynomials, φk(·)s, are functions of client polynomials fi(x)
and database elements, i.e., φk(x) mod(n) =

∑r
i=1 fi(x) ×

Di,k mod(n) for 1 ≤ k ≤ s. To be able to extract the kth
element of the desired rows (β) using servers’ responses, the
querying client should remove the effect of the undesired
records (Di,k(x), for i /∈ β) in φk(x). To do so, the client
should construct the polynomials in a way that for any inputs
sample x ∈ X, the functions fi(x) output zero for i /∈ β,
and output a non-zero value for i ∈ β. Recall that each client
polynomial fi(x) can be represented as:

fi(x) =

q+1∑
m=1

ym × `m(x) mod(n)

`m(x) =
∏

1≤v≤q+1,v 6=m

(x− xv)
(xm − xv)

mod(n)

(14)

where (xm, ym)’s are the points used to generate the
polynomials. As can be seen from the above equation, there are
two approaches for making each polynomial (fi(x)) zero for
i /∈ β. The first approach is making ym zero in (14) for input
x = xm, so (xm, 0) is one of the points used for interpolation
of all the polynomials (fi(x)) for i /∈ β. This requires a fix
set of x-coordinates X = {x1, . . . , xq+1} be used across all
of the r PIR-tailored secret sharing polynomials. This is what
has been done by prior PIR protocols [30], [37], [26], [20].

The second approach to make fi(x) zero for i /∈ β is to
make `m(x) in (14) zero by choosing x and xv in a way
that x − xv becomes zero. In mod(pj), if pj |(x − xv) or
pj |ym (where | means division), then fi(x) mod(pj) will
produce zero. In this approach, the x-coordinates used for

generating functions, xms, can be different from the input x-
coordinate, x. This approach enables us to choose different
random x-coordinates for each polynomial. In our complete
HPIR protocol, we combine these two approaches, i.e., we use
different x-coordinates and y-coordinates for the PIR-tailored
secret sharing polynomials. Combining these two approaches
enables us to use just two prime numbers in constructing
the PIR-tailored secret sharing polynomials, which reduces
the communication overhead as explained below. This is
while the basic version of our protocol (Section VI) needs
q prime numbers. Specifically, in our basic protocol, all of
the calculations are in mod(n), and n is the multiplication of
q prime numbers, so size of sending and receiving elements
linearly depends on the number of queries. Using just two
prime numbers in our PIR-tailored secret sharing constructions
will keep the size of each element in query and response
vectors to be fixed and independent of the number of queries.
This will improve the efficiency of our complete HPIR in
upload and download bandwidth consumption by sending and
receiving smaller elements.

Preserving the degree of freedom of secrets using two
prime numbers In the basic version of the protocol, the
x-coordinates are fixed for all of the secret sharing polyno-
mials; however, for the complete version we use different x-
coordinates for constructing each polynomial. We add q new
random variables r′ij in x-coordinates of each polynomial,
which doubles the degree of freedom of the secrets compared
to the basic version (Section VI). If an adversarial server
removes the effect of half of the prime numbers, the secrets
will still have a high enough degree of freedom. To do so,
the client will create half of the PIR-tailored secret sharing
points using p1 (i.e., (p1 × random+ secret)), and the other
half using p2. Algorithm VII.1 summarizes our complete HPIR
protocol.

Correctness: In extracting the requested records (step C2 in
Algorithm VII.1), when j is an even number (j%2 == 0),
the client will use p1, otherwise (j is an odd number) she
will use p2, where j is the index of the query. Below we
demonstrate the correctness of our HPIR protocol (when j is
even) by showing that the client can always reconstruct her
queried records using our HPIR protocol.

φk(αj)× fβj (αj)
−1 mod(p1) = (

r∑
i=1

fi(αj)× Di,k)

× fβj (αj)
−1 mod(p1) = (

r∑
i=1

(

q+1∑
m=1

yi,m ×
q+1∏

v=1,v 6=m

αj − xi,v
xi,m − xi,v

)

× Di,k)× fβj (αj)
−1 mod(p1) = fβj (αj)× Dβj ,k

× fβj (αj)
−1 mod(p1) = Dβj ,k

(15)

where Dβj ,k is the kth element of the jth query. As can be
seen, the effect of undesired records (i /∈ β) will be cancelled
in the calculation of φk(αj)×fβj

(αj)
−1

mod(p1) since fi(αj)
will produce zero for them in mod(p1).

A. Communication Costs

To retrieve q records, the client should send 2× q× r×w
bits to the rich server, and 2× r × w to the poor server. The
rich server will send back 2 × q × s × w bits, and the poor
server will send back 2× s× w bits.

9

Client (querying for block numbers β = {β1, . . . , βq}) :
P1. Choose two prime numbers P = {p1, p2} with more than w bits (pi > 2w).
P2. Calculate n = p1 × p2, and release it to the servers.
P3. Choose q random distinct {α1, . . . , αq} from Z∗n.
P4. Construct r polynomials of degree q. For generating the ith function, the client will take the following steps:

P4(a). Construct (q + 1) x-coordinates X = {xi,1, . . . , xi,q+1} as follows for 1 ≤ i ≤ r (r′i,j and r′ are random numbers
from Z∗n such that gcd(xi,j − xi,k, n) = 1 for a specific i and different j and ks:

xi,j =


(r′i,j × p1) + αj mod(n) for 1 ≤ j ≤ q, j%2 == 0 (even)
(r′i,j × p2) + αj mod(n) for 1 ≤ j ≤ q, j%2 == 1 (odd)
r′ mod(n) for j = q + 1

P4(b). Construct (q + 1) y-coordinates Y = {yi,1, . . . , yi,q+1} as follows for 1 ≤ i ≤ r (ri,j is a random number from Z∗n):

yi,j =


(ri,j × p1) + δi,j mod(n) for 1 ≤ j ≤ q, j%2 == 0 (even)
(ri,j × p2) + δi,j mod(n) for 1 ≤ j ≤ q, j%2 == 1 (odd)
ri,j mod(n) for j = q + 1

P4(c). Use Lagrange polynomial interpolation to find fi(x) of degree q that satisfies (xi,j , yi,j) for 1 ≤ i ≤ r, 1 ≤ j ≤ q + 1.
P5. Choose q random distinct x-coordinates X′ = {x′1, . . . , x′q}.
P6. Send matrix Qc to the rich server (Qc[j][i] = fi(x

′
j) for 1 ≤ i ≤ r, 1 ≤ j ≤ q).

P7. Send the the query matrix Qr (Qr[0][i] = fi(r
′) = ri,j) for 1 ≤ i ≤ r, j = q + 1) to the poor server.

Each Server:
S1. Multiply the Qc and Qr matrices to the database matrix, and return the results (Rc = Qc ∗ D and Rr = Qr ∗ D) to
the client.
Client:
C1. Construct polynomials φk(x) (for 1 ≤ k ≤ s) that satisfy (x′j , Rc[j][k]) for 1 ≤ j ≤ q and (r′,Rr[0][k]) using
Lagrange polynomial interpolation.
C2. extract the items of queried records (for 1 ≤ j ≤ q, 1 ≤ k ≤ s):

Dβj ,k =

{
φk(αj)× fβj (αj)

−1
mod(p1) j%2 == 0 (even)

φk(αi)× fβj
(αj)

−1
mod(p2) j%2 == 1 (odd)

Algorithm VII.1: Our HPIR Protocol (Complete Version)

Pseudo-random number generator for coordinates We can
further improve the communication overhead of the poor server
by having the client use a pseudo-random number generator
to generate the query vectors of the poor server. For our
protocol, instead of random ri,q+1 for 1 ≤ i ≤ r, client
will generate r numbers {g1, g2, . . . , gr} in mod(n) using a
random seed. Now, the client in our basic HPIR will construct
the polynomials as follows:

yi,j =

{
(ri,j × pj) + δi,j mod(n) for 1 ≤ j ≤ q

gi mod(n) for j = q + 1
(16)

and in the complete version, client will construct the polyno-
mials as follows:

yi,j =


(ri,j × p1) + δi,j mod(n) for 1 ≤ j ≤ q, j%2 == 0

(ri,j × p2) + δi,j mod(n) for 1 ≤ j ≤ q, j%2 == 1

gi mod(n) for j = q + 1
(17)

Therefore, instead of sending r elements to the poor server,
she will just send the seed of the pseudo-random number
generator, and the poor server can reproduce these r numbers
{g1, g2, . . . , gr} and construct the query vector. Note that
using a PRNG will downgrade our security guarantee from
information-theoretic to computational security; this is because
in the presence of PRNG, the rich server is able to perform a
(computationally intensive) exhaustive search to find the seed
of the PRNG.

B. Security

Information-theoretic security If all the PIR servers do not
collude, they can not learn anything about client’s queries.
There are (3q + 1) × r + 2q + 1 variables in the system that
are only known to the querying client: (q + 1) × r variables
of rij , q × r variables of r′ij , q × r secrets δij , q variables of
αj , q variables of X′, and one variable r′. Half of the random
variables rij and r′ij are obfuscated with p1 and the other half
are obfuscated with p2. Even if the PIR server knows the values
of these two prime numbers, it can only remove half of the
variables by calculating the shares in mod(p1) or mod(p2).
The server knows at most q×r points of the polynomials, and
it can remove half of rij and r′ij , which results in a more than
q × r degree of freedom for the secrets.

Robustness against colluding servers If all the PIR servers
collude, they can determine the client’s query since they can
factorize n and find the prime numbers used in the scheme.
However, if we use larger prime numbers, the security of
the protocol will reduce to computationally secure against all
colluding servers based on the factorization problem, which
is an NP problem. To compromise a client, the servers first
need to factorize n. This trades off between performance and
security: increasing the size of the prime numbers improves the
computational security, but the matrix multiplication will take
longer. Therefore, our protocol is information-theoretically
secure if up to t servers collude; with large prime num-

10

bers, our protocol is computationally secure even if all
the servers collude (given large prime numbers). This is
because, if all the servers collude, they still need to obtain the
prime factors of n to cancel the effect of random numbers. So,
if the prime numbers are large enough, e.g., n has 2048 bits
or more, the adversarial servers should solve the factorization
problem, which is an NP problem.

C. Overhead Comparison to Prior Work

1) Communication Cost: Table III compares the com-
munication costs of our protocol (Complete Version) with
different protocols and in different settings. We also compare a
homogeneous version of our HPIR protocol with state-of-the-
art homogenous protocols (in the homogenous version of our
protocol, we send equal number of shares to the servers). We
compare the protocols for the same volume of retrieved traffic.
Therefore, we amplify Goldberg’s [26] communications by q
as it is a single-query protocol.

Also, note that our element size is two times of prior
works since our calculations are in mod(n), where n is a
multiplication of two prime numbers. Each prime number has
about w bits, so our elements are about 2× w bits. However,
in prior works the calculations are in mod(p), where p is a w
bits prime number.

Homogeneous version of our protocol Compared to Gold-
berg’s PIR [26], homogeneous version of our protocol is
slightly higher in upload and download bandwidth consump-
tion. Comparing to Henry et al. PIR [30], the number of
exchanged elements are the same, but each element of our
protocol is two times as their elements. However, since Henry
et al. PIR protocol is based on ramp secret sharing, they need
t + q servers for their protocol. It means that by increasing
the number of queries, they need more non-colluding servers,
while our protocol can be run on as few as two servers.

Heterogeneous version of our protocol We also compare
the heterogeneous version of our protocol (complete version)
with the heterogeneous versions of Goldberg’s PIR and Henry
et al. PIR. We create a heterogeneous version for these prior
works by making the client send more queries to one of the
PIR servers (the rich server). However, to maintain the privacy
level (the maximum number of colluding servers without
compromising client’s privacy), we need to increase the degree
of the polynomials used in their schemes. This results in
increasing the bandwidth/computation overhead on the rich
server of these prior works without reducing the burden on
the poor server. Therefore, the heterogeneous variant of these
prior works has no advantage over their homogenous versions.
Also, we see that using a PRNG in our protocol reduces the
upload bandwidth to the poor server at the cost of downgrading
our information-theoretic security to a computational security.

2) Computation Cost: Table IV compares the computation
cost of our protocol (Complete Version) with other protocols.
These numbers are based on standard matrix multiplication,
which take O(n3) operations. For large number of queries (q),
using the Strassen’s algorithm for matrix multiplication will
further reduce the order of matrix multiplication to O(n2.8)
operations.

0.0
Database Size (GB)

0

T
o
ta

l
P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

0.5 1.0 1.5 2.0

1

2

3

4

5

w=256

w=512

w=768

w=1024

Figure 2: Total computation time (s) (i.e., server and client
running times) vs. database sizes (GB) of protocol (complete
version) in retrieving one record with different element sizes.
w = 512 provides the least overhead.

VIII. IMPLEMENTATION

Implementation Setup We have implemented our HPIR
protocol in C++, wrapped in Rust. We have implemented our
code to be compatible with the Percy++ PIR library [43]. We
use the NTL library [49] for handling big number operations
similar to the Percy++ [43] PIR suite. Our code is available at
https://github.com/SPIN-UMass/HPIR.

We measure the performance of our algorithm on a desktop
computer with a quad-core i7 CPU @ 3.6 GHz and 32 GB
of RAM, running Ubuntu 18.04. All of our experiments are
single-threaded, though our most expensive operation, which
is server computation, is highly parallelizable. In all of the
experiments, we load the database into the RAM before
measuring the time, so the measured times do not include
the I/O times. Note that the computation time of our protocol
depends mostly on the size of the database, not its dimensions,
so in all of the experiments we choose s = r =

√
N/w, which

is the communication-optimal block size derived by Goldberg
et al. [26] (N is the size of database in bits and w is the element
size in bits). All of our experiments are performed in a two
servers scenario (that suits most of the real world applications):
a rich server with high communication/computation resources
and a poor server with lower resources.

We compare our protocol with Goldberg PIR [26] design
in a two servers scenario with privacy level t = 1. To ensure
a fair comparison, we integrate Goldberg’s PIR protocol from
Percy++ [43] into our test framework, which is wrapped in
Rust. We compare our design with this paper since Henry et
al. PIR [30] with single query (q = 1) is a variant of Goldberg’s
PIR.

Degree of Heterogeneity (DH) We define a degree of
heterogeneity (DH) parameter to represent the heterogeneity
of our protocol. For a two-server setting, we define DH to

11

https://github.com/SPIN-UMass/HPIR

Table III: Communication cost comparison (bits)

PIR Protocol
Upload BW for

Each Server
Download BW for

Each Server Total Upload BW Total Download BW
Minimum Number
of PIR Servers (`)

Goldbergs’s PIR [26] q × r × w q × s× w `× q × r × w `× q × s× w t+ 1
Henry et al. PIR [30] r × w s× w `× r × w `× s× w t+ q

Homogeneous Version of Our Protocol
(Complete Version) (q + 1 servers, t = q) 2× r × w 2× s× w 2× `× r × w 2× `× s× w q + 1

Homogeneous Version of Our Protocol
(Complete Version) (2 servers, t = 1) r × (q + 1)× w s× (q + 1)× w 2× (q + 1)× r × w 2× (q + 1)× s× w 2

Heterogeneous version
of Goldberg’s PIR [26]

Rich Server:
Poor Server:

q × r × t× w
q × r × w

q × s× t× w
s× t× w

(`+ t)× q × r × w (`+ t)× q × s× w t+ 1

Heterogeneous version
of Henry et al. PIR [30]

Rich Server:
Poor Server:

r × t× w
r × w

s× t× w
s× w

(`+ t)× r × w (`+ t)× s× w t+ q

Our Heterogeneous Protocol
(Complete Version), t = 1

Rich Server:
Poor Server:

2× q × r × w
2× r × w

2× q × s× w
2× s× w

2× (q + 1)× r × w 2× (q + 1)× s× w 2

Our Heterogeneous Protocol (Complete
Version) Using PRNG, t = 1

Rich Server:
Poor Server:

2× q × r × w
2× w

2× q × s× w
2× s× w

(2× q × r + 1)× w 2× (q + 1)× s× w 2

Table IV: Computation cost comparison

PIR Protocol Computation Cost for Each Server Total Computation Cost Minimum Number
of PIR Servers (`)

Goldbergs’s PIR [26] O(q × r2 × s) O(`× q × r2 × s) t+ 1

Henry et al. PIR [30] O(r2 × s) O(`× r2 × s) t+ q

Our Heterogeneous Protocol (Complete Version) Rich Server:
Poor Server:

O(q × r2 × s)
O(r2 × s) O((q + 1)× r2 × s) 2

be the ratio of the number of query shares the client sends
to the rich PIR server divided by the number of query shares
she sends to the poor PIR server. This metric represents the
bandwidth/computation ratio of the PIR servers. Note that in
our protocol, when retrieving q records, the maximum DH is
q/1, as the client will have q + 1 secret shares to send to the
servers.

Tuning the element size (w) parameter First, we measure
the computation overhead performance of our protocol for
different element sizes to find the optimal value of w. Figure 2
shows the total computation times (server and client side) for
various database sizes, and for different values of w. The plot
suggests using w = 512 bits as the most efficient value, which
we use for the rest of our experiments.

Note that a w = 512 bits results in n to have a size of 1024.
In case of the collusion of the PIR servers, the security of the
protocol will be tied to factorizing n. Therefore, increasing w
will improve the security of the protocol in case of collusion
at the cost of higher processing times.

A. Server Computation Overhead

The major computation performed by the servers in our
HPIR protocol is matrix multiplication (i.e., multiplying the
query matrix, Q, into the database matrix, D). Figure 3 shows
the server processing time for both the rich and poor servers
for different database sizes and different number of queries (q)
for a fixed w = 512. As can be seen, the server processing
time is linear with the size of the database. The figure also
compares the rich and poor server processing times with that
of Goldberg’s ITPIR [26] for various number of queries. As
can be seen, the rich server processing time of our HPIR
protocol is very close to, but slightly larger than Godlberg’s

server processing time (for the same number of records q being
retrieved). On the other hand, the processing time of the poor
server is significantly smaller than Goldberg’s homogeneous
server. As an example, to retrieve a 1.4 MB file (4 records)
from a 2 GB database, the rich and poor HPIR servers will take
12.5 and 4.09 seconds, respectively, whereas the two servers
of Goldberg will take 12.04 seconds each. That is, our HPIR
protocol significantly reduces the computation overhead on
the poor server by slightly increasing the computation on
the rich (resourceful) server. We see that the computation
gain of our HPIR further increases by increasing the degree
of heterogeneity. As shown in below, increasing the degree of
heterogeneity slightly increases the client’s computation.

B. Client Computation Overhead

The client computation overhead has two parts: client
preparation time, which includes constructing the r polynomi-
als and generating the query matrices, and client data extraction
time, which includes the time of constructing s functions φk(x)
and extracting the elements of queried records. Figure 4 shows
the client processing time of our HPIR protocol for different
database sizes and different number of queries (for w = 512).
As can be seen, client processing time has a sub-linear (square-
root) relation with the database size, which is in agreement
with Goldberg’s results [26].

Also, as Figure 4 shows, our client processing time is larger
than Goldberg’s homogeneous algorithm. However, we see that
even the increased client computation times are highly practical
for typical clients, e.g., the computation time for q = 4 records
in a 1.5GB database is around 500ms for HPIR, compared
to 200ms for Goldberg’s. Also, note that server computation
times are the practical bottleneck in PIR protocols since they
are an order of magnitude larger that client computation times

12

0.0
Database Size (GB)

0

R
ic

h
 S

e
rv

e
r

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

0.5 1.0 1.5 2.0

2

4

6

8

10

12

HPIR DH=1/1 (homogeneous) (q=1)

HPIR DH=2/1 (q=2 records)

HPIR DH=3/1 (q=3 records)

HPIR DH=4/1 (q=4 records)

Goldberg [26] (q=1 record)

Goldberg [26] (q=2 records)

Goldberg [26] (q=3 records)

Goldberg [26] (q=4 records)

(a) Server processing time of the rich server vs. Database size

0.0
Database Size (GB)

0

P
o
o
r

S
e
rv

e
r

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

0.5 1.0 1.5 2.0

2

4

6

8

10

12 HPIR for Any DH (Any Number of Records)

Goldberg [26] (q=1 record)

Goldberg [26] (q=2 records)

Goldberg [26] (q=3 records)

Goldberg [26] (q=4 records)

(b) Server processing time of the poor server vs. Database size

Figure 3: Server processing time (for a degree of heterogeneity of q/1)

0.0
Database Size (GB)

0

C
li
e
n
t

P
ro

c
e
s
s
in

g
 T

im
e
 (

m
s
)

0.5 1.0 1.5 2.0

100

200

300

400

500

600

HPIR DH=1/1 (homogeneous) (q=1)

HPIR DH=2/1 (q=2 records)

HPIR DH=3/1 (q=3 records)

HPIR DH=4/1 (q=4 records)

Goldberg [26] (q=1 record)

Goldberg [26] (q=2 records)

Goldberg [26] (q=3 records)

Goldberg [26] (q=4 records)

Figure 4: Client processing time vs. Database size

(e.g., 0.2s client computation time compared to 9s server
computation time in Goldberg’s). Therefore, we believe that
HPIR improves a client’s overall experience by offloading
the bulk of computations to the resourceful server, which can
reduce the client’s overall retrieving time.

C. Communication Overhead

Recall that, in HPIR the client can control the DH pa-
rameter by splitting the q + 1 query vectors non-uniformly
among the PIR servers, e.g., q and 1 vectors to the rich and
poor servers, respectively. Figure 5 shows the download and
upload bandwidth overheads of our heterogeneous protocol
for retrieving q = 31 records from a 2 GB database, with
different degrees of heterogeneity. As can be seen, increasing
the degree of heterogeneity trades off the communication

overhead of the poor and rich servers. For instance, for a
DH = 16/16 (which represents a homogeneous setting),
the download/upload bandwidth of the rich and poor servers
are 11.3MB each. By increasing DH to 31/1, the bandwidth
of the rich and poor servers will be 21.9MB and 724KB,
respectively. Therefore, we see that HPIR reduces the com-
munication overhead of the poor server by increasing the
communication overhead on the rich server. We also see
that the homogeneous version of our HPIR protocol (i.e., for
DH = 16/16) imposes computation overheads very close to
that of Goldberg’s homogeneous protocol. Finally, the figure
shows that the bandwidth of our poor server when we are using
a PRNG is always fixed regardless of the value of DH , since
the client sends only one element (the seed of the PRNG).

Note that for the above results, we set s = r [26], which is
the optimal value as described in our implementation setup
section (so, s = 5792 results in records of size 0.35MB).
The client can also control DH by changing the value of s
(the number of elements in each database record), therefore
changing the required number of queries q for a given PIR
transaction. We demonstrate this in Figure 6; The figure shows
the download and upload bandwidth overheads (normalized by
the size of the queried file) of our heterogeneous protocol for
retrieving a 10.95MB file from a 2GB database for different
record sizes. We can see that there is a trade-off between
the upload bandwidth of the rich server and the download
bandwidth of the poor server; the client can adjust this by
changing s.

D. Comparison With State-Of-The-Art PIR Protocols

Here we compare our HPIR design with state-of-the-art
(homogenous) two-server PIR designs of PIR-PSI [19] and
RAID-PIR [18], as well as the state-of-the-art single-server
SealPIR [4], in terms of computation and communication costs.
Note that not all PIR protocols can be converted into an
HPIR format, so we compare with their regular (homogenous)
versions. In particular, RAID-PIR [18] is based on XOR, and

13

100

101

Rich Server DBW/UBW
Goldberg [26] DBW/UBW
Our Homogenous DBW/UBW

Poor Server DBW/UBW
Poor Server UBW (PRNG)

16/16 19/13 22/10 25/7 28/4 31/1
Degree of Heterogeneity (DH)

10−4

Ba
nd
wi
d−
h
Co

ns
um

pt
io
n
(M

B)

Figure 5: The upload and download overheads for our HPIR
(complete version). We download a 10.95MB file from a 2GB
database with q = 31.

0
Size of Each Record (MB)

B
a
n
d
w

id
th

 C
o
n
s
u
m

p
ti

o
n
 /

 S
iz

e
 o

f
F
il
e

246810

10−5

10−4

10−3

10−2

10−1

100

101

102

Rich Server DBW

Poor Server DBW

Rich Server UBW

Poor Server UBW

Poor Server UBW with PRNG

Figure 6: The upload and download overheads (normalized
by size of the requested file) for our HPIR. We download a
10.95MB file from a 2GB database.

PIR-PSI [19] is based on the distributed point function (DPF)
rather than secret sharing; therefore there is no trivial way to
convert them into an HPIR setting.

The two-server protocol of PIR-PSI [19] and the single-
server SealPIR [4] provide computational security, so we
compare them with our computational HPIR protocol (with
PRNG). For fair comparisons, we use the original implementa-
tion of PIR-PSI [45] and SealPIR [47], and we use the original
values for retrieved file sizes used in their implementations.
As shown in Table V, our poor HPIR server (with DH=2/1)

Table V: Comparison of the computation and communication
costs between HPIR and state-of-the-art PIR designs in a
(database size is 288MB)

PIR Protocol Retrieved file Server computation (s) UBW (MB) DBW (MB)

PIR-PSI [19] 4 B 0.528 0.02 0.03
SealPIR [4] 288 B 3.00 0.06 0.25

Computational HPIR (DH=2/1) 270 KB Rich: 1.14
Poor: 0.39

Rich: 0.52
Poor: 0.001

Rich: 0.52
Poor: 0.26

RAID-PIR [18] 540 KB 0.51 0.003 0.52

IT HPIR (DH=4/1) 540 KB Rich: 1.16
Poor: 0.40

Rich: 1.05
Poor: 0.26

Rich: 1.05
Poor: 0.26

has smaller server computation overhead compared to these
two PIR designs, despite the fact that HPIR retrieves a much
larger file (i.e., 270kB versus 4B and 288B). Also, the upload
bandwidth of HPIR is better than these two designs, and its
download bandwidth is close to them despite retrieving much
larger data.

We also compare RAID-PIR [18], which is an ITPIR
algorithm, with our IT HPIR protocol. We use the original
implementation of RAID-PIR [46]. As shown in Table V, in
retrieving a file of 540 KB, the poor HPIR server achieves
lower computation and download bandwidth overheads. In-
creasing the DH metric will further reduce the load on our
poor HPIR server.

IX. CONCLUSIONS

We introduced a new class of multi-server PIR protocols,
called heterogeneous PIR (HPIR), in which the PIR servers
running the protocol undertake different computation and com-
munication overheads. We argue that HPIR algorithms enable
new applications for PIR by allowing the participation of low-
resource parties in running private services, as well as improve
the utility of some of the existing applications of PIR.

We designed the first HPIR protocol that is based on a
novel PIR-tailored secret sharing construction, and deployed
an efficient implementation of it compatible with the Percy++
PIR library [43]. We extensively evaluated the performance of
our implemented HPIR protocol in different settings, e.g., for
different degrees of heterogeneity.

ACKNOWLEDGEMENTS

We would like to thank Christina Poepper for shepherding
our paper, Adam O’Neill and Mukul Kulkarni for extremely
helpful discussions, and anonymous reviewers for their feed-
back. This research was funded by the NSF award #1719386
and the Intel Corporation award #34627511.

REFERENCES

[1] C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O. Killijian, “XPIR:
Private information retrieval for everyone,” Proceedings on Privacy
Enhancing Technologies, vol. 2016, no. 2, pp. 155–174, 2016.

[2] C. Aguilar-Melchor and P. Gaborit, “A lattice-based computationally-
efficient private information retrieval protocol,” in Western European
Workshop on Research in Cryptology. Citeseer, 2007.

[3] B. Ahlgren, M. D’Ambrosio, M. Marchisio, I. Marsh, C. Dannewitz,
B. Ohlman, K. Pentikousis, O. Strandberg, R. Rembarz, and V. Ver-
cellone, “Design considerations for a network of information,” in
Proceedings of the 2008 ACM CoNEXT Conference, 2008, pp. 1–6.

14

[4] S. Angel, H. Chen, K. Laine, and S. Setty, “PIR with compressed
queries and amortized query processing,” in 2018 IEEE Symposium
on Security and Privacy (SP). IEEE, 2018, pp. 962–979.

[5] A. Beimel and Y. Ishai, “Information-theoretic private information
retrieval: A unified construction,” in International Colloquium on Au-
tomata, Languages, and Programming. Springer, 2001, pp. 912–926.

[6] A. Beimel, Y. Ishai, E. Kushilevitz, and I. Orlov, “Share conversion
and private information retrieval,” in 2012 IEEE 27th Conference on
Computational Complexity. IEEE, 2012, pp. 258–268.

[7] A. Beimel, Y. Ishai, E. Kushilevitz, and J.-F. Raymond, “Breaking the
o (n/sup 1/(2k-1)/) barrier for information-theoretic private information
retrieval,” in Foundations of Computer Science, 2002. Proceedings. The
43rd Annual IEEE Symposium on. IEEE, 2002, pp. 261–270.

[8] A. Beimel and Y. Stahl, “Robust information-theoretic private informa-
tion retrieval,” in International Conference on Security in Communica-
tion Networks. Springer, 2002, pp. 326–341.

[9] R. Bhat and N. Sunitha, “A novel hybrid private information retrieval
with non-trivial communication cost,” in 2018 4th International Con-
ference on Recent Advances in Information Technology (RAIT). IEEE,
2018, pp. 1–7.

[10] G. R. Blakley and C. Meadows, “Security of ramp schemes,” in
Workshop on the Theory and Application of Cryptographic Techniques.
Springer, 1984, pp. 242–268.

[11] N. Borisov, G. Danezis, and I. Goldberg, “DP5: A private presence
service,” Proceedings on Privacy Enhancing Technologies, vol. 2015,
no. 2, pp. 4–24, 2015.

[12] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) LWE,” SIAM Journal on Computing, vol. 43,
no. 2, pp. 831–871, 2014.

[13] C. Cachin, S. Micali, and M. Stadler, “Computationally private infor-
mation retrieval with polylogarithmic communication,” in International
Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer, 1999, pp. 402–414.

[14] J. Cappos, “Avoiding theoretical optimality to efficiently and privately
retrieve security updates,” in International Conference on Financial
Cryptography and Data Security. Springer, 2013, pp. 386–394.

[15] H.-Y. Chien, J.-K. Jan, and Y.-M. Tseng, “A practical (t, n) multi-secret
sharing scheme,” IEICE transactions on fundamentals of electronics,
communications and computer sciences, vol. 83, no. 12, pp. 2762–2765,
2000.

[16] B. Chor and N. Gilboa, “Computationally private information retrieval,”
in Proceedings of the twenty-ninth annual ACM symposium on Theory
of computing. ACM, 1997, pp. 304–313.

[17] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private informa-
tion retrieval,” in Foundations of Computer Science, 1995. Proceedings.,
36th Annual Symposium on. IEEE, 1995, pp. 41–50.

[18] D. Demmler, A. Herzberg, and T. Schneider, “RAID-PIR: Practical
multi-server PIR,” in Proceedings of the 6th edition of the ACM
Workshop on Cloud Computing Security. ACM, 2014, pp. 45–56.

[19] D. Demmler, P. Rindal, M. Rosulek, and N. Trieu, “PIR-PSI: Scaling
private contact discovery,” Proceedings on Privacy Enhancing Tech-
nologies, vol. 2018, no. 4, pp. 159–178, 2018.

[20] C. Devet, I. Goldberg, and N. Heninger, “Optimally robust private
information retrieval.” in USENIX Security Symposium, 2012, pp. 269–
283.

[21] P. Dingyi, S. Arto, and D. Cunsheng, “Chinese remainder theorem:
applications in computing, coding, cryptography.” World Scientific,
1996.

[22] C. Dong and L. Chen, “A fast single server private information retrieval
protocol with low communication cost,” in European Symposium on
Research in Computer Security. Springer, 2014, pp. 380–399.

[23] F.Olumofin and I. Goldberg, “Privacy-preserving queries over relational
databases,” in International Symposium on Privacy Enhancing Tech-
nologies Symposium. Springer, 2010, pp. 75–92.

[24] Y. Gertner, S. Goldwasser, and T. Malkin, “A random server model for
private information retrieval (or how to achieve information theoretic
PIR avoiding data replication).” IACR Cryptology ePrint Archive, vol.
1998, p. 13, 1998.

[25] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L. Tan,
“Private queries in location based services: anonymizers are not nec-
essary,” in Proceedings of the 2008 ACM SIGMOD international
conference on Management of data. ACM, 2008, pp. 121–132.

[26] I. Goldberg, “Improving the robustness of private information retrieval,”
in 2007 IEEE Symposium on Security and Privacy (SP). IEEE, 2007,
pp. 131–148.

[27] T. Gupta, N. Crooks, W. Mulhern, S. T. Setty, L. Alvisi, and M. Walfish,
“Scalable and private media consumption with popcorn.” in USENIX
Symposium on Networked Systems Design and Implementation, 2016,
pp. 91–107.

[28] S. M. Hafiz and R. Henry, “Querying for queries: Indexes of queries
for efficient and expressive IT-PIR,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2017, pp. 1361–1373.

[29] R. Henry, “Polynomial batch codes for efficient IT-PIR,” Proceedings
on Privacy Enhancing Technologies, vol. 2016, no. 4, pp. 202–218,
2016.

[30] R. Henry, Y. Huang, and I. Goldberg, “One (block) size fits all: PIR and
SPIR with variable-length records via multi-block queries.” in Network
and Distributed System Security Symposium, 2013.

[31] R. Henry, F. Olumofin, and I. Goldberg, “Practical PIR for electronic
commerce,” in Proceedings of the 2011 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2011.

[32] A. Kiayias, N. Leonardos, H. Lipmaa, K. Pavlyk, and Q. Tang, “Opti-
mal rate private information retrieval from homomorphic encryption,”
Proceedings on Privacy Enhancing Technologies, vol. 2015, no. 2, pp.
222–243, 2015.

[33] O. Knill, “A multivariable chinese remainder theorem,” arXiv preprint
arXiv:1206.5114, 2012.

[34] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” in Proceedings of the 2007 conference on Applications,
technologies, architectures, and protocols for computer communica-
tions, 2007, pp. 181–192.

[35] J. Kurihara, S. Kiyomoto, K. Fukushima, and T. Tanaka, “A fast (k,
l, n)-threshold ramp secret sharing scheme,” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences,
vol. 92, no. 8, pp. 1808–1821, 2009.

[36] E. Kushilevitz and R. Ostrovsky, “Replication is not needed: Single
database, computationally-private information retrieval,” in Foundations
of Computer Science, 1997. Proceedings., 38th Annual Symposium on.
IEEE, 1997, pp. 364–373.

[37] L. Li, M. Militzer, and A. Datta, “rPIR: ramp secret sharing-based
communication-efficient private information retrieval,” International
Journal of Information Security, vol. 16, no. 6, pp. 603–625, 2017.

[38] H. Lipmaa and K. Pavlyk, “A simpler rate-optimal CPIR protocol,” in
International Conference on Financial Cryptography and Data Security.
Springer, 2017, pp. 621–638.

[39] P. Mittal, F. Olumofin, C. Troncoso, N. Borisov, and I. Goldberg, “PIR-
Tor: Scalable anonymous communication using private information
retrieval.” in USENIX Security Symposium, 2011, p. 31.

[40] F. Olumofin and I. Goldberg, “Revisiting the computational practicality
of private information retrieval,” in International Conference on Finan-
cial Cryptography and Data Security. Springer, 2011, pp. 158–172.

[41] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 1999, pp. 223–
238.

[42] L.-J. Pang and Y.-M. Wang, “A new (t, n) multi-secret sharing scheme
based on shamir’s secret sharing,” Applied Mathematics and Computa-
tion, vol. 167, no. 2, pp. 840–848, 2005.

[43] “Percy++ project on sourceforge,” Available at http:
//percy.sourceforge.net/.

[44] A. M. Piotrowska, J. Hayes, N. Gelernter, G. Danezis, and A. Herzberg,
“AnNotify: A private notification service,” in Proceedings of the 2017
on Workshop on Privacy in the Electronic Society. ACM, 2017, pp.
5–15.

[45] “PIR-PSI implementation github repository,” Available at https:
//github.com/osu-crypto/libPSI.

15

http://percy.sourceforge.net/
http://percy.sourceforge.net/
https://github.com/osu-crypto/libPSI
https://github.com/osu-crypto/libPSI

[46] “RAID-PIR implementation github repository,” Available at https:
//github.com/encryptogroup/RAID-PIR.

[47] “SealPIR implementation github repository,” Available at https:
//github.com/microsoft/sealpir.

[48] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[49] V. Shoup, “Number theory library (NTL) for c++,” Available at Shoup’s
homepage https://shoup.net/ntl, 2010.

[50] J. P. Stern, “A new and efficient all-or-nothing disclosure of secrets
protocol,” in International Conference on the Theory and Application
of Cryptology and Information Security. Springer, 1998, pp. 357–371.

[51] S. Tarkoma, M. Ain, and K. Visala, “The publish/subscribe internet
routing paradigm (psirp): Designing the future internet architecture.” in
Future Internet Assembly, 2009, pp. 102–111.

[52] A. Venkataramani, J. F. Kurose, D. Raychaudhuri, K. Nagaraja, M. Mao,
and S. Banerjee, “Mobilityfirst: a mobility-centric and trustworthy inter-
net architecture,” ACM SIGCOMM Computer Communication Review,
vol. 44, no. 3, pp. 74–80, 2014.

[53] H. Yamamoto, “Secret sharing system using (k, l, n) threshold scheme,”
Electronics and Communications in Japan (Part I: Communications),
vol. 69, no. 9, pp. 46–54, 1986.

[54] C.-C. Yang, T.-Y. Chang, and M.-S. Hwang, “A (t, n) multi-secret
sharing scheme,” Applied Mathematics and Computation, vol. 151,
no. 2, pp. 483–490, 2004.

[55] S. Yekhanin, “New locally decodable codes and private information
retrieval schemes,” in Electronic Colloquium on Computational Com-
plexity, vol. 127, 2006, p. 2006.

[56] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, P. Crowley, C. Pa-
padopoulos, L. Wang, B. Zhang et al., “Named data networking,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 66–
73, 2014.

APPENDIX A
AN OVERVIEW OF PIR DESIGNS

Information-Theoretic PIR (ITPIR) protocols ITPIR proto-
cols require more than one server, and there is an assumption
that these servers are not colluding. These protocols have
two main advantages, first they are fast since they do not
use complicated cryptography operations. Second, the query
is information-theoretic private i.e. the adversary can not learn
anything about the queries even though she has unlimited com-
putation power. This kind of PIR requires low computational
resources compared to the CPIR protocols.

Chor ITPIR Chor et al. [17] introduced a very basic ITPIR
which uses exclusive OR as the main operation. One advantage
of XOR is that it can cancel the effect of repeated elements,
so the client makes her queries in a way that all the records
have an even number of repeats, so at the end, she can cancel
their effects. In this protocol the client create ` queries that
`− 1 of them are totally random and the last one is the result
of XOR of the first ` − 1 vectors and ~ej . Then it will send
them to PIR servers, each server multiplies these vectors to
the database in GF(2). This dot production in GF(2) is simple
XOR, which ”1” in position jth of ~ej means XOR this record,
and ”0” means do not XOR this record. At the end, each server
sends back the result of the XOR to the client, and the client
XOR all the responses.

Although this scheme is the first ITPIR protocol, it is
still widely cited and proposed for different applications. This
amount of citations comes from the fact that this scheme is
very fast compared to all other PIR protocols.

Robustness Most of the PIR protocols use ”Honest-but-
Curious” adversarial model. This model assumed that all the
servers are honest, it means they always respond a correct
answer, but they try to infer which record has been fetched.
One of the main issues with ITPIR is that how the client should
deal with servers that do not respond at all or send an incorrect
answer that makes the client’s result incorrect. A t-private `-
server PIR is a private information retrieval protocol which
information-theoretically protects the privacy of the client’s
queries when less than t+1 servers collude. Beimel et al. [8]
explore the situation in which some servers cannot respond, but
the client still can retrieve the data. They define a t-private k-
out-of-` PIR as a PIR in which the client only needs k answers
out of ` servers to recover her record, and if up to t servers
collude then the client still has privacy. They also examine
what happens if v servers reply incorrect answers, and how
many correct answers the client needs to recover the record
successfully. They defined t-private v-byzantine-robust k-out-
of-` PIR as a PIR that can handle a v number of byzantine
servers which sends incorrect answers to corrupt the client’s
result.

PIR using secret sharing [6] and [5] show that secret
sharing and secret conversion can be used to construct a private
information retrieval. Li et al. [37] propose four different
multi-query ITPIR protocols based on ramp secret sharing
schemes [35], [53], and they call them ramp secret sharing-
based PIR (rPIR). [29] proposes new techniques that increase
efficiency of multi-server ITPIR protocols based on ramp
secret sharing. This paper shows ramp secret sharing can help
in encoding the data similar to encoding the query. They
encode each record of the database into multi shares of a secret,
and the client can recover the record by sending multi queries
for these shares.

Computational PIR (CPIR) protocols Most of CPIR pro-
tocols use a single server which is computationally bounded
for retrieving data. It means the security of these protocols
is based on a very difficult mathematical problem, and if the
adversary finds a solution for the problem, or if she has enough
time and computation resources, some data will be leaked.

Stern et al. CPIR Stern et al. [50] propose a CPIR pro-
tocol that its algorithm is based on additively homomorphic
cryptosystem which has these functions: (i) Gen: function
of generating public and private keys pk, sk and system
parameters , (ii) Enc: Encryption function with public key
,and (iii) Dec: Decryption function. The important point in
this scheme is that the cryptosystem is non-deterministic i.e.
the Enc is a randomize function that encrypts the same input
to different output each time. Dec function will cancel the
effect of the random variable that was used in Enc function.
The most famous non-deterministic cryptosystem that is used
for CPIR is Paillier [41].

XPIR [1] proposes a new CPIR based on this protocol by
looking at each record of the database as a polynomial (the
elements of the databases are encoded as coefficients of the
polynomial). However, the bandwidth consumption is not very
good, so SealPIR [4] introduce a way to compress the queries
in this system.

Kushilevitz and Ostrovsky CPIR One of the merits of

16

https://github.com/encryptogroup/RAID-PIR
https://github.com/encryptogroup/RAID-PIR
https://github.com/microsoft/sealpir
https://github.com/microsoft/sealpir
https://shoup.net/ntl

CPIR is that the client can run the protocol recursively to
reduce the bandwidth consumption. This idea was used by
Kushilevitz and Ostrovsky [36] in their scheme for improving
the communication cost. First, they split the database into
several virtual blocks, and each one of these blocks contains
some of the real blocks, then the client sends her query for
a specific virtual block, then server will calculate the result
of that query on the database and will look at the result as a
new database, the next query will be applied to this temporary
database, and this process continues until one vector of size s
will be sent to the client, and client can recover her requested
index out of this result.

Aguilar-Mechor et al. CPIR Aguilar-Mechor et al. [2]
propose a lattice-based PIR, and their security is based on the
differential hidden lattice problem which is an NP problem.
Olumofin and Goldberg [40] show that this design is an order
of magnitude faster than trivial download which downloads the
entire database.

APPENDIX B
SECURITY PROOF

Theorem 1: In our PIR-tailored secret sharing (when
q > t), regardless of the number of secrets being shared, the
participants can not learn anything about the secrets with up
to q shares.

Proof: To prove the security of this scheme, we should
show that with less than q + 1 shares, there is no information
about the secrets (when q > t). For proving security, we should
prove that the adversary given q shares can not differentiate
that a polynomial with one secret with value of 1 generates
these q shares or a polynomial with all secrets with value 0.
By this proof, we can show that in the PIR protocol based on
this scheme, the PIR server cannot differentiate that the PIR
client wants a record (si = 1) or not (si = 0).

Suppose that the polynomial f(x) is sharing one secret
with value 1 and q − 1 secrets with value 0 (with degree q),
and there is another polynomial f ′(x) that is sharing 0 as the
values of secrets with the same degree of q. We can show
that both of these polynomial functions can generate the q
shares (x′j , f(x

′
j)) the adversary has, i.e., both of them can

generate the same q shares (f ′(x′j) = f(xj) for 1 ≤ j ≤ q).
We assume that at the worst case, the adversary knows the
x-coordinates used for generating secret sharing polynomial
X = {x1, . . . , xq+1} and the x-coordinates used for generating
shares (X′ = {x′1, . . . , x′q+1}).
For generating the polynomial f(x) which shares one secret
1, we use the following points:

(1, (r1×p1)+1 mod(n)), . . . , (q, (rq×pq) mod(n)), (q+1, rq+1 mod(n))

For generating the polynomial f ′(x) which shares 0s, we use
the following points:

(1, (r′1×p1)+0 mod(n)), . . . , (q, (r′q×pq) mod(n)), (q+1, r′q+1 mod(n))

Suppose that the adversary has q shares (x′j , yj) for 1 ≤ j ≤ q,
so he has q equations based on Lagrange interpolation. First we
prove that the value of the first secret (s1) is indistinguishable,

and then the same proof can be used for other secrets too. If
the adversary assumes that this secret sharing is sharing value
of s1 = 0:

p1r1L1(x
′
1) + p2r2L2(x

′
1) + · · ·+ rq+1Lq+1(x

′
1) = y1 mod(n)

p1r1L1(x
′
2) + p2r2L2(x

′
2) + · · ·+ rq+1Lq+1(x

′
2) = y2 mod(n)

...

p1r1L1(x
′
q) + p2r2L2(x

′
q) + · · ·+ rq+1Lq+1(x

′
q) = yq mod(n)

where {p1, p2, . . . , pq} are q different prime numbers and n =
p1p2 . . . pq .

If the adversary assumes that this secret sharing is sharing
value of s1 = 1:

(p1r1 + 1)L1(x
′
1) + p2r2L2(x

′
1) + · · ·+ rq+1Lq+1(x

′
1) = y1 mod(n)

(p1r1 + 1)L1(x
′
2) + p2r2L2(x

′
2) + · · ·+ rq+1Lq+1(x

′
2) = y2 mod(n)

...

(p1r1 + 1)L1(x
′
q) + p2r2L2(x

′
q) + · · ·+ rq+1Lq+1(x

′
q) = yq mod(n)

where Lm(x′j) is the Lagrange function for specific values of
X = {x1, x2, . . . , xq+1}:

Lm(x′j) =

q+1∏
n=1,n6=m

(x′j − xn)(xm − xn)−1) mod(n)

If we show that there is at least one solution for both of
these set of equations, we can show that the adversary cannot
differentiate that the secret was zero or one. So for set of
unknowns {r1, r2, . . . , rq+1} and {r′1, r′2, . . . , r′q+1} we should
show that:

(p1r1 + 1)L1(x
′
1) + p2r2L2(x

′
1) + · · ·+ pqrqLq(x

′
1) + rq+1Lq+1(x

′
1) =

p1r
′
1L1(x

′
1) + p2r

′
2L2(x

′
1) + · · ·+ pqr

′
qLq(x

′
1) + r′q+1Lq+1(x

′
1) mod(n)

(p1r1 + 1)L1(x
′
2) + p2r2L2(x

′
2) + · · ·+ pqrqLq(x

′
2) + rq+1Lq+1(x

′
2) =

p1r
′
1L1(x

′
2) + p2r

′
2L2(x

′
2) + · · ·+ pqr

′
qLq(x

′
2) + r′q+1Lq+1(x

′
2) mod(n)

...

17

(p1r1 + 1)L1(x
′
q) + p2r2L2(x

′
q) + · · ·+ pqrqLq(x

′
q) + rq+1Lq+1(x

′
q) =

p1r
′
1L1(x

′
q) + p2r

′
2L2(x

′
q) + · · ·+ pqr

′
qLq(x

′
q) + r′q+1Lq+1(x

′
q) mod(n)

We can write:

r′1 = r1 + k1

r′2 = r2 + k2

...

r′q = rq + kq

r′q+1 = rq+1 + kq+1

By putting the above solution in the equations we will have:

L1(x
′
1) = p1k1L1(x

′
1) + · · ·+ pqkqLq(x

′
1) + kq+1Lq+1(x

′
1) mod(n)

L1(x
′
2) = p1k1L1(x

′
2) + · · ·+ pqkqLq(x

′
2) + kq+1Lq+1(x

′
2) mod(n)

...

L1(x
′
q) = p1k1L1(x

′
q) + · · ·+ pqkqLq(x

′
q) + kq+1Lq+1(x

′
q) mod(n)

We know that if an equation has an answer in mod(pi), it
will have answer in mod(n) too where n is a multiple of pi.
So we can apply mod(pi) on the ith equation of above system,
then we have the following equations:

L1(x
′
1) = p2k2L2(x

′
1) + · · ·+ pqkqLq(x

′
1) + kq+1Lq+1(x

′
1) mod(p1)

L1(x
′
2) = p1k1L1(x

′
2) + · · ·+ pqkqLq(x

′
2) + kq+1Lq+1(x

′
2) mod(p2)

...

L1(x
′
q) = p1k1L1(hx

′
q) + p2k2L2(hq) + · · ·+ kq+1Lq+1(x

′
q) mod(pq)

Therefore, based on Multivariable Chinese Reminder The-
orem (Appendix D), since all the pis are co-prime to each other
and in each equation we have the piLi(h)s that are co-prime in
mod(pj) where j 6= i (we used X and X′ in Section IV-B that
gcd(xi − x′j , n) = 1 for xi ∈ X and x′j ∈ X′, there is at least
one solution for {k1, k2, . . . , kq+1}. Therefore the adversary
given q shares cannot differentiate what secret was shared.

APPENDIX C
CHINESE REMAINDER THEOREM (CRT)

Chinese Remainder Theorem is one of the most useful tools
in number theory [21]. This theorem shows the existence of
solution for following q equations:

x = ai mod(pi) for 1 ≤ i ≤ q

This theorem says that if pis are co-prime to each other,
then there is one and only one value for x mod(n) where n
is
∏q
i=1 pi.

APPENDIX D
MULTIVARIABLE CHINESE REMAINDER THEOREM

This theorem [33] says that for a linear systems of equa-
tions A~x = ~b mod(~P) (each equation is ai,1x1 + · · · +
ai,nxn = bi mod(pi)) has solutions for all ~b if the pi ∈ ~P
are co-prime to each other and there is at least one element in
ith row (all rows) of the matrix A that is co-prime with pi.

18

	Introduction
	Preliminaries
	Preliminaries on PIR
	Preliminaries on Secret Sharing

	Introducing Heterogeneous PIR
	Potential Applications Scenarios
	Privacy-preserving Content Delivery
	Private P2P File Sharing
	Query Privacy in Cache Networks

	Our PIR-Tailored Secret Sharing Algorithm
	Introducing PIR-tailored Secret Sharing
	Algorithm Details
	Security Analysis

	Sketch of our HPIR Protocol
	Our HPIR Algorithm (Basic Version)
	Client Generates r Polynomials
	Client Generates Queries
	The Servers Respond
	Reconstructing the Records by the Client
	Communication Overhead
	Security

	Our HPIR Algorithm (Complete Version)
	Communication Costs
	Security
	Overhead Comparison to Prior Work
	Communication Cost
	Computation Cost

	Implementation
	Server Computation Overhead
	Client Computation Overhead
	Communication Overhead
	Comparison With State-Of-The-Art PIR Protocols

	Conclusions
	References
	Appendix A: An Overview of PIR Designs
	Appendix B: Security Proof
	Appendix C: Chinese Remainder Theorem (CRT)
	Appendix D: Multivariable Chinese Remainder Theorem

